We noticed that you're not using the latest version of your browser. You'll still be able to use our site, but it might not work or look the way it's supposed to. We recommend upgrading your browser.
JOURNAL OF WATER MANAGEMENT MODELING JWMM
AUTHORS
REVIEWERS
ABOUT
RESOURCES
Menu SEARCH LOGIN
Software
Tap in to water management modeling that excels. PCSWMM is flexible, easy to use and streamlines your workflow – saving you time and resources.
Training
Beginner or seasoned user, our flexible training options help you understand and master the full capabilities of both EPA SWMM5 and PCSWMM.
Community
There's a whole community to support you - find solutions, view code and more.
OPEN SWMM
OPEN EPANET
Journal
Our peer-reviewed, open-access Journal of Water Management Modeling. Expand your knowledge, get insights and discover new approaches that let you work more effectively.
Conference
The International Conference on Water Management Modeling. Meet your colleagues, share your experiences and be on the forefront of advances in our profession.
Consulting
Not sure how to solve a complex water management issue? Put our experience, knowledge, and innovation to work for you.
  • AUTHORS
  • REVIEWERS
  • ABOUT
  • SEARCH
  • RESOURCES
    Software
    Training
    Community
    OPEN SWMM
    OPEN EPANET
    Journal
    Conference
    Consulting

JWMM Login

Verifying credentials  Don't have an account?
Forgot your password?

Applications of Radar-Based Rainfall Estimates to Urban Flood Studies

Daniel B. Wright, James A. Smith, Gabriele Villarini and Mary Baeck (2013)
Princeton University
DOI: https://doi.org/10.14796/JWMM.R246-06
Comments

Collapse all
Collapse all

Abstract

The United States has dense weather radar and rain gage networks that provide potentially useful rainfall inputs for a variety of hydrologic applications, especially in heterogeneous urban settings where the time and length scales of hydrologic processes are short and our understanding of the complex interactions of extreme rainfall and runoff is poor. 10-year (2001-2010) high-resolution (1 km2, 15-minute resolution) bias-corrected radar rainfall datasets have been developed for the Charlotte, Atlanta, and Baltimore metropolitan areas using the Hydro-NEXRAD radar rainfall processing system and dense urban rain gage networks. The bias-corrected radar rainfall fields accurately capture the spatial and temporal structure of heavy rainfall, as case studies of the catastrophic floods on July 22, 1997 in Charlotte and September 19-22, 2009 in Atlanta demonstrate. An example application of radar-based rainfall estimates for rainfall frequency analysis based on the principles of stochastic storm transposition (SST) and using a catalogue of major storm events is presented.

The technique can be readily extended to flood frequency analysis by way of a high-resolution hydrologic model. A high-resolution model of the extensively urbanized Little Sugar Creek watershed in Charlotte is being developed using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. This model will allow the development of SST-based assessment of flood frequency across a drainage network as well as enable the evaluation of the impacts of different land-use and stormwater management scenarios on flood frequency.

This paper is only available in PDF Format:

  View full text PDF

Image


Expand all

PAPER INFO

Identification

CHI ref #: R246-06 693
Volume: 21
DOI: https://doi.org/10.14796/JWMM.R246-06
Cite as: CHI JWMM 2013;R246-06

Publication History

Received: N/A
Accepted: N/A
Published: February 15, 2013

Status

# reviewers: 2
Version: Final published

Copyright

© 2013 CHI. Some rights reserved.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Water Management Modeling is an open-access (OA) publication. Open access means that articles and papers are available without barriers to all who could benefit from them. Practically speaking, all published works will be available to a worldwide audience, free, immediately on publication. As such, JWMM can be considered a Diamond, Gratis OA journal.

All papers published in the JWMM are licensed under a Creative Commons Attribution 4.0 International License (CC BY).

JWMM content can be downloaded, printed, copied, distributed, and linked-to, when providing full attribution to both the author/s and JWMM.


AUTHORS

Daniel B. Wright

Princeton University, Princeton, NJ, USA
ORCiD:

James A. Smith

Princeton University, Princeton, NJ, USA
ORCiD:

Gabriele Villarini

Princeton University, Princeton, NJ, USA
ORCiD:

Mary Baeck

Princeton University, Princeton, NJ, USA
ORCiD:


ADDITIONAL DATA

 

COMMENTS

Be the first to comment.

RELATED PAPERS

 


TAGS

 

Connect With Us

Journal of Water Management Modeling
ISSN: 2292-6062

  info@chijournal.org

147 Wyndham St. N., Ste. 202
Guelph, Ontario, Canada, N1H 4E9
About JWMM

Mission and intent

Editorial board

Review process

Disclaimer

Privacy policy

For Authors

Submit paper

Author checklist

Journal paper template

Reference guide

Unit conversion table

For Reviewers

Reviewing guidelines

Criteria to be used

Standards of acceptance


Copyright 2023 by CHI