We noticed that you're not using the latest version of your browser. You'll still be able to use our site, but it might not work or look the way it's supposed to. We recommend upgrading your browser.
JOURNAL OF WATER MANAGEMENT MODELING JWMM
AUTHORS
REVIEWERS
ABOUT
RESOURCES
Menu SEARCH LOGIN
Software
Tap in to water management modeling that excels. PCSWMM is flexible, easy to use and streamlines your workflow – saving you time and resources.
Training
Beginner or seasoned user, our flexible training options help you understand and master the full capabilities of both EPA SWMM5 and PCSWMM.
Community
There's a whole community to support you - find solutions, view code and more.
OPEN SWMM
OPEN EPANET
Journal
Our peer-reviewed, open-access Journal of Water Management Modeling. Expand your knowledge, get insights and discover new approaches that let you work more effectively.
Conference
The International Conference on Water Management Modeling. Meet your colleagues, share your experiences and be on the forefront of advances in our profession.
Consulting
Not sure how to solve a complex water management issue? Put our experience, knowledge, and innovation to work for you.
  • AUTHORS
  • REVIEWERS
  • ABOUT
  • SEARCH
  • RESOURCES
    Software
    Training
    Community
    OPEN SWMM
    OPEN EPANET
    Journal
    Conference
    Consulting

JWMM Login

Verifying credentials  Don't have an account?
Forgot your password?

Rainfall Accuracy Considerations Using Radar and Rain Gauge Networks for Rainfall-Runoff Monitoring

Baxter Vieux and Jean Vieux (2005)
Vieux & Associates, Inc.
DOI: https://doi.org/10.14796/JWMM.R223-17
Comments

Collapse all
Collapse all

Abstract

Components of urban drainage during wet weather affecting water quality in receiving waters are stormwater and overflows from sanitary or combined sewers. A common element affecting each of these components is the spatial distribution of rainfall over contributing areas. Knowing quantities of stormwater arriving at inlets, infiltrating into sanitary sewers, and the inflow into combined sewers is critical to successful hydraulic model calibration and sewer system design. Accuracy and representativeness of the spatial and temporal distribution of rainfall over contributing areas is an important determinant of model accuracy. It is not always feasible to install sufficient rain gauges to measure spatially representative rainfall over a metropolitan sewer district at the scale of sewersheds. Nor is it feasible to install streamflow monitoring stations or sample priority pollutants in every impacted watershed. Thus the combination of radar and rain gauges to characterize the distribution of rainfall offers technical advantages for monitoring both rainfall and runoff in urban areas.

Evaluation of a 55-event series, the median accuracy, as measured by gauge-radar comparison, has a median average difference of ±8%. Gauge network density requirements should take into account the variability of precipitation, distribution over sewershed areas, and local or climatological trends caused by terrain or large water bodies. Runoff measured by streamflow is used to validate the radar to gauge correction and to test the influence of random and systematic error in the radar input. Because simulated runoff is dependent on the rainfall input uncertainty, runoff simulated using gauge-corrected radar is evaluated for a series of five storms composed of both tropical storms and convective events.

For the five storm events over Brays Bayou in Houston Texas, the predicted hydrograph volume depends on the uncertainty of the radar input. Using the gauge-corrected radar as input, the rainfall-runoff model is able to predict volume to within ± 7.8 mm, which is nearly identical to the uncertainty of the input, ± 7.98 mm as measured by radar-gauge comparison. The influence of uncorrected radar (bias) is much greater than the random errors that remain in the gauge-corrected radar inputs as demonstrated by a distributed runoff model. Accurate rainfall derived from a combined system of radar and gauges reduces input- and model-output errors associated with rainfall that is not representative over the drainage areas modeled.

This paper is only available in PDF Format:

  View full text PDF

Image


Expand all

PAPER INFO

Identification

CHI ref #: R223-17 900
Volume: 13
DOI: https://doi.org/10.14796/JWMM.R223-17
Cite as: CHI JWMM 2005;R223-17

Publication History

Received: N/A
Accepted: N/A
Published: February 15, 2005

Status

# reviewers: 2
Version: Final published

Copyright

© 2005 CHI. Some rights reserved.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Water Management Modeling is an open-access (OA) publication. Open access means that articles and papers are available without barriers to all who could benefit from them. Practically speaking, all published works will be available to a worldwide audience, free, immediately on publication. As such, JWMM can be considered a Diamond, Gratis OA journal.

All papers published in the JWMM are licensed under a Creative Commons Attribution 4.0 International License (CC BY).

JWMM content can be downloaded, printed, copied, distributed, and linked-to, when providing full attribution to both the author/s and JWMM.


AUTHORS

Baxter Vieux

Vieux & Associates, Inc., Norman, OK, USA
ORCiD:

Jean Vieux

Vieux & Associates, Inc., Norman, OK, USA
ORCiD:


ADDITIONAL DATA

 

COMMENTS

Be the first to comment.

RELATED PAPERS

 


TAGS

 

Connect With Us

Journal of Water Management Modeling
ISSN: 2292-6062

  info@chijournal.org

147 Wyndham St. N., Ste. 202
Guelph, Ontario, Canada, N1H 4E9
About JWMM

Mission and intent

Editorial board

Review process

Disclaimer

Privacy policy

For Authors

Submit paper

Author checklist

Journal paper template

Reference guide

Unit conversion table

For Reviewers

Reviewing guidelines

Criteria to be used

Standards of acceptance


Copyright 2023 by CHI